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ABSTRACT

A proposal has been made to compute a 2-D numerical solution to

the stream function - vorticity equation to analyze the flow field, both

of an airfoil in ground effect and of an air cushion vehicle of arbitrary

geometry supported by peripheral jets. This report is an investigation of

both problems. Finite difference solutions of the stream function-vorti-

*city equation are computed on a body fitted coordinate system. The

Laplace equation for streamlines around an airfoil in ground effect is

solved, and results are compared to an analytic finite singularity solu-

tion. Comparison of C and Cm.c" at varying angles of attack and ground

distance indicate good agreement. The finite difference method is found

to be sensitive to grid point distribution about the leading edge, for

which a criterion is established. Since an air cushion vehicle acts as a

flow source within the field, the finite difference expression is modified

to accommodate a branch cut. The presence of vorticity is essential to

definition of the peripheral jets. The vorticity distribution, derived

from arbitrary velocity distribution at jet outlets and assumed to be

constant along streamlines, leads to a stable solution of the stream

function-vorticity equation.
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2-D FLOW NUMERICAL SOLUTION FOR

AIRFOIL AND HOVERCRAFT IN GROUND EFFECT

I. INTRODUCTION

Background

The Air Force Flight Dynamics Laboratory is currently investigating

the feasibility of designing a high performance aircraft with air cush-

ioned wings instead of standard landing gear to achieve a take-off and

landing capability on rough and bomb-damaged runways. The wing air cush-

ion is to be generated by a peripheral jet. Investigating the behavior of

such a design is a complicated fluid mechanics problem that combines air

cushion dynamics with a wing in ground effect. Current methods for air-

foil flow field solution range from simple potential flow solutions to

viscous, compressible Navier-Stokes solutions. Air cushion flow fields

are determined through experimental techniques. Current air cushion anal-

ysis (Ref 3, 7) is based upon assuming a simple jet geometry to enable

integration of pressure gradients. In the commonly used exponential theory

jet streamlines with a constant radius of curvature are assumed, and pres-

sure gradients across streamlines supply the centripital acceleration.

These methods provide reasonable results for symmetric cases only.

Improved flow analysis of air cushion dynamics would diminish the need to

evaluate design parameters exclusively through expensive experiments. A

proposed approach is to determine the flow field for an air cushioned air-

foil by using 2-D finite difference solution to the stream function-

vorticity equations.



Purpose of This Study

The general purpose is to obtain a generally applicable method for

solution of air cushioned wing flow field. In particular, a 2-D flow

field solution by using the stream function-vorticity equations is pro-

posed. This study is a small scaled feasibility study to the proposed

solution and includes two separate aspects of the problem. The first as-

pect is investigating the behavior of a finite difference numerical solu-

tion for an airfoil in ground effect and comparing the results to those

obtained by an independent method. The second aspect is to solve a sym-

metric case of air cushion vehicle with peripheral jet and obtain a

physically reasonable flow field.

Procedure

As mentioned the flow fields in this study are solved by using the

stream function-vorticity formulation. Use of the stream function guar-

antees conservation of mass. The general incompressible vorticity equation

that is derived from momentum equations has the form

O - ' + VW = - (1)

Equation (1) indicates that in the absence of diffusion the vorticity

must be constant along streamlines, in which case equation (1) can be re-

written in stream function formulation for planar flow as

= -W(*) (2)

A tacit assumption throughout the study is that neither the initial dis-

tribution of vorticity in the peripheral jet nor the vorticity transport

has a critical impact on pressure distribution under the vehicle (both

2



points must be checked by an additional feasibility study). In summary,

the vorticity is determined from an arbitrary assumed velocity distri-

bution across the peripheral jet outlets in the air cushion case. For

the case of the airfoil in ground effect the vorticity is set to zero.

The numerical formulation consists of generation of body fitted

coordinate system by solving Poisson equations for transformed coordi-

nates (E,n) as a function of physical coordinates (x,y). Free parameters

in grid generation equations as well as freedom in the selection of boun-

dary points location allow the manipulation of the physical grid to a

configuration which provides enhanced resolution where it is needed. The

stream function-vorticity equations and the body fitted coordinate system

equations are both transformed to the (E,n) plane ard solved by SOR finite

difference techniques.

Specific Problems Addressed

1. Cylinder in uniform potential flow

This case is solved to verify both the body fitted coordinate

system generation and the potential flow stream function solu-

tion by comparison with well known analytical results.

2. Airfoil in free stream and ground effect

The 2-D flow field numerical solution is used even though it is

realized that some important aspects of wing in ground effect

are related to 3-0 analysis, such as the dramatic decrease in

induced drag and large differences in handling qualities. The

airfoil flow field is analyzed with both a finite difference

method and a finite singularity method. Lift and quarter chord

moment coefficients variation with angle of attack and ground

distance are derived by both methods and compared.

3



3. Air cushion device with peripheral jets

Introduction of branch cut to relieve multi-valued stream

function from fluid source within the vehicle. To obtain a

I. well defined jet, vorticity is introduced into shear layers

at the edges of the peripheral jets and assumed to remain

constant along each streamline.

44
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II. FINITE SINGULARITY METHOD

In this study, the airfoil in ground effect is solved for an in-

vicid incompressible flow using a finite difference method. This chapter

describes an airfoil in ground effect solution using a finite singularity

method which establishes a comparison standard for the finite difference

solution.

Thin Airfoil Theory

The problem of calculating the flow field and the aerodynamic prop-

erties of an arbitrary airfoil with no restriction as to its thickness,

camber, or angle of attack, is complex in practice. Thin airfoil theory

provides simplification of the mathematical problem with a rather wide

applicability. In thin airfoil theory the flow around the airfoil is

represented by a sheet of vortices lying along the camber line. The per-

turbed flow field is determined by the following (Ref 1):

1. Differential equation

V2€ = + =0 (3)

2. Boundary conditions

(UO + VO) VF = 0 on airfoil (4)

V . o at infinity (5)

3. Kutta condition

The velocity is finite and continuous at the trailing edge.

Once the airfoil shape is replaced by a sheet of vorticity of

strength y(x) at the camber line and thin airfoil assumptions are applied,

the mathematical problem reduces to one singular integral equation.

5



dYa _ c/2 d (6)Uo dx 27.r x-&

Solution of the integral equation, to determine y(x), can be done

by the following techniques:

1. Sohngen integral inversion

2. Prandtl Glauert transformation

3. Finite singularity method

Given the vorticity distribution y along the camber line (or along

the x-axis), the lift and moment coefficients are easily found by inte-

gration.

2 c/2
C9 V f-  y(x)dx (7)

V 0 c C/2

2 Ch
Cx Vom - (x°-x) y(x)dx (8)

The rest of this chapter deals with finite singularity solution for

a flat plate in ground effect. The solution provides y(X), Cz, Cm as

function of ground distance and angle of attack.

Method Description

The finite singularity method is an approximate numerical method

to solve the integral equation (6). A finite number of point vortices

is obtained by solving a set of algebraic equations, which is a very

convenient computational formulation (Ref 2).

The airfoil is divided into N elements (Fig 1). Increasing N im-

proves the accuracy, but usually ten elements are enough. A vortex of

6
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finite strength is placed at the 25% of each element, points (XiYi).

The tangential flow boundary condition is satisfied at 75% of each ele-

ment, points (Xj,Y.). The set of algebraic equations to be solved are:

2ya = W(xI N r i(XiYi)(Xj-Xi)oax j 2 i=l (XX Z+(YY j 1,2,..N (9)

Flat Plate in Ground Effect

As mentioned above, this method is to be applied to a thin symmetric

airfoil in ground effect for the purpose of establishing a point of com-

parison for verification of the finite difference code. In the context

of thin airfoil theory a 1% thickness symmetric airfoil appears as a flat

plate. Ground effect in the context of the finite singularity method iq

established by using an image flat plate to satisfy tangential flow on the

ground (Fig 2). The tangential flow condition at point (xj,yj) in the

plate is determined by vortices on both the plate and the image, which

leads to the following equation.

3ya 1 N r..(x.-x.) N ri.(x -xi)

Uoax (7 (10)
x J,yj

Substituting the following relations into equation (10)

2ya (11)
ax

X = I -cosa i = i or j (12)

Y = a-t cosa K = i or j (13)

8



gi ves:

N .cosa ri (j.-I.)cosa (14)
-2 U°=1 . =-2 i+  (Lj-zi)4cosZa+[2a-(t +Yi)sinu]F

Where points zi,9j are calculated for N equal elements as:

i= (-0.5 + i-1 0.25 C i = l. N (15)

9 = (-0.5 + 1+ 025. C (16)
j N ~ )c jl N(6

Equation (14) is written in a matrix form

-2rU0a = cosa * [A]{r i} (17)

The vortex strengths are obtained by inverting matrix A.

{ri} -2Una [A- ] (18)

Integrating equations (7) and (8) numerically provides the lift and mom-

ent coefficients

C 2-co s c

Uo. i=l

Cm =U-7- i (Cz). r i  (20)

Equations (18), (19), and (20) are solved numerically for 20 equal length

elements.

Results

Tabulated and graphic representation (Tables 1 and 2, Figs 3.6) of

lift and quarter chord moment coefficients as function of ground distance

9



and angle of attack, are shown. The results indicate an increase in

lift coefficient and pitch down quarter chord moment coefficient, for a

given angle of attack as the airfoil approaches the ground. The increase

in lift and pitch down quarter chord moment coefficients start to be

significant when the ground distance equals the chord length and less.

The obtained results will be compared against those obtained by the

finite difference method in Chapter V.

10
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TABLE 1. Lift Coefficient as Function of Angle of Attack
and Ground Distance - Finite Singularity Method

GROUND DISTANCE

INFINITY 1.00 0.50 0.25

0.0 0.00 0.00 0.00 0.00

1.0 .11 .12 .12 .17

2.0 .22 .23 .25 .33

3.0 .33 .35 .39 .50

4.0 .44 .46 .52 .67

5.0 .55 .58 .65 .84

6.0 .66 .70 .78 1.01

7.0 .77 .81 .92 1.18

8.0 .88 .93 1.05 1.35

9.0 .99 1.04 1.18 1.52

10.0 1.10 1.16 1.31 1.70

I
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TABLE 2. Quarter Chord Moment Coefficient as Function
of Angle of Attack and Ground Distance -

Finite Singularity Method

GROUND DISTANCE

INFINITY 1.00 0.50 0.25

0.0 0.00000 0.00000 0.00000 0.00000

1.0 -.00000 -.00076 -.00237 -.00578

2.0 -.00000 -.00151 -.00470 -.01129

3.0 -.00000 -.00226 -.00698 -.01654

4.0 -.00000 -.00300 -.00922 -.02154

5.0 -.00000 -.00374 -.00142 -.02629

6.0 -.00000 -.00446 -.01357 -.03079

7.0 -.00000 -.00519 -.01563 -.03504

8.0 -.00000 -.00590 -.01777 -.03905

9.0 -.00000 -.00662 -.01982 -.04279

10.0 -.00000 -.00732 -.02183 -.04627

16



III. COORDINATE TRANSFORMATION

Coordinate transformation (or generation of boundary fitted coordi-

nate system) is a general method that can be used for multiple bodies with

arbitrary boundaries. The method can be used for solution of any type of

partial differential equations. The mathematical background and develop-

ment are described in detail in Ref 4. In this work the method is used to

solve the stream function equation for various boundaries and boundary con-

ditions. In this chapter a very brief discussion of the method is introduced.

Mathematical Development

For purposes of discussion in this work the region of interest is

two dimensional and doubly connected. The solution of all the partial dif-

ferential equations is done in the transformed plane which is rectangular

in shape and has a square mesh. Figure 7 illustrates an arbitrary two di-

mensional doubly connected region with arbitrary inner and outer boundaries

that is transferred into a rectangular region. The inner contour maps into

the nj line and the outer contour maps into the n2 line. The contours

connecting the inner and outer boundaries map into amin a max Since

they coincide in the physical plane, they constitute re-entrant boundaries

in the transformed plane. This type of mapping is used for all transfor-

mations in this work. The coordinates of each grid point in the physical

plane are generated as solutions of Poisson equations in the physical plane,

with Dirichlet boundary conditions on all boundaries. Control functions P

and Q appear as inhomogeneous terms in the Poisson equations, that are:

17
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= N('n) (21)

k +  Q(Iny) (22)

This system in the transformed form becomes:

X .2BX + YX + J2  (PX + QX 0 (23)

aY 20Y + YY + j2  (PY + QY) =0 (24)

Where a, a, Y, J are functions of first order partial derivatives

of the physical coordinates (X,Y) with respect to transformed coordinates

( ,n). This type of mapping physical boundaries into the transformed plane

is arbitrary and not limited to the mapping described above.

Coordinate System Control

Spacing of coordinate lines on the boundaries is accomplished easily

as boundaries points are given as input data. Also, the coordinate lines

that map into 4max and min in the transformed plane are easily controlled

by input data. However, a spacing of coordinate lines within the field is

controlled by varying the elliptic generating system (changing P and Q).

In the control system used, P is zero and Q is a sum of exponential

terms with various coefficients, to attract constant n lines to the body.

The coefficients have been calculated for a flat plate to ensure sufficient

constant n lines in the boundary layer. Those P and Q functions were pro-

grammed for airfoil calculations in viscous flow, and are less important

for potential flow calculation considered here. Consequently, slight

attraction of constant n lines to the airfoil is used for free stream

airfoil calculations and Q is set to zero in all other cases.

19
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Difference Equations

.7 The governing differential equations are approximated by second

order central difference expressions. The number of constant { lines

is designated IMAX and the number of constant & lines by JMAX, the com-

putational field is (JMAX-2).(IMAX-I). In the computer program (Appendix

A) that is used the standard field size is 71 x 44. The boundary mapping

described previously is such as J=l and J=JMAX correspond to the inner

and outer boundaries. The inner contour (the body) is given by 71 pairs

of (x,y) data points, the outer boundary is either given in the same

manner or is calculated in the program. An initial guess is generated

in the program. Because the difference equations are nonlinear, the ini-

tial guess must be within a certain neighborhood of the solution if the

iterative solution is to converge. Boundary input data and initial

guess type for the various regions are discussed in Chapters V and VI.

Difference equations are solved by a SOR (Successive Over Relaxation)

iterative scheme. The acceleration parameter of the SOR scheme was usual-

ly set equal to one, since the objective of this study is not optimization

of transformation computer time.

Transformation Properties

The transformation procedure described above holds several benefits

and properties.

1. Numerical solution of partial differential equations may be

done in the transformed plane and on a fixed rectangular grid with square

mesh. Even though the partial differential equation is complicated by

the transformation, the numerical scheme does not have to compensate for

grid changes.

20
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2. No interpolation is required to locate boundary points regard-

less of the physical field. This property is of particular importance

for boundaries with strong curvature such as an airfoil leading edge.

3. Even time dependent boundaries transform to a fixed rectangular

grid with square mesh, but the transformation equations (23 and (24) must

be re-solved at each time step, which changes a,,y,J as well as the

coordinate system in the physical plane at each time step.

4. The coordinate system generated by equations (23) and (24) is

not necessarily orthogonal but it is a general solution for arbitrary

spacing and capability of concentration of coordinate lines. This gene-

rality outweighs the lack of orthogonality.

5. The partial differential equation type (elliptic, parabolic,

hyperbolic) remains invariant under the transformation.

Applications

Generation of specific boundary fitted coordinated systems for the

various boundaries chosen to solve the flow field for an airfoil in both

free stream and ground effect are described in Chapter V. The coordinate

system for the hovercraft model is described in Chapter VI.

As a simple verification of the computer program, two boundary

fitted coordinate systems were generated for the region between two con-

centric circles of one and ten units diameter. Equally spaced concentric

circles were used as an initial guess in each case. The first coordinate

system was computed without attraction of coordinate lines (P = Q = 0

in equation (23) and (24)), where the expected and derived coordinate

system consisted of concentric circles (Figs 8 and 9). The same region

21



is solved the second time with slight attraction to the 
inner circle lead-

ing edge (point (-0.5,0)), the attraction can easily 
be noticed in Fig 10.

22



FIGURE 8. Body-Fitted Coordinate System for a Cylinder
in a Circular Outer Boundary (Entire region).
Each fifth and n line are shown.

6M 
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FIGURE 9. Body Fitted Coordinate System for a Cylinder in a
Circular Outer Boundary. No Attraction of Coordinates
(P : Q = 0)
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FIGURE 10. Body-Fitted Coordinate System for a Cylinder in a
Circular Outer Boundary. Attraction of Constant n
Coordinates.
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IV. STREAM FUNCTION SOLUTION

Any set of partial differential equations may be solved on the

boundary fitted coordinate system by transforming the equations and asso-

ciated boundary conditions and solving numerically in the transformed

plane. In particular, the method is applied here to solve the stream

function equation.

Differential Equation and Aerodynamic Coefficients

Two dimensional potential flow about an airfoil is described by

Laplace equation for the stream function.

+ xx+ Pyy = 0 (25)

The simplest boundary conditions are Dirichlet type where values

are specified on the boundaries

*(x,y) = 1(x,y) on the body (26)

(x,y) = *2(x,Y) on the outer boundary (27)

Equation (25) and boundary conditions (26) and (27) after trans-

formed are:

C U 2Bpn + yinn + 0n + Ti = 0 (28)

=(tnmin) = tP(Cnmin) (29)

( ,nmax ) = '2(&,nrriax) (30)

26



For this case of irrotational flow the Bernoulli equation holds for

the entire field, and, for stream function that is nondimensionalized

relative to the airfoil chord and free stream velocity, we find on the

body surface

1 -(31)

In our case the free stream is in positive x direction and there-

fore the integration of Cp to obtain lift and quarter chord moment co-

efficients leads to:

Emax

C - f CpXEd5 (32)

min

{max

C - f x C (X-+ 4 )dt (33)Cmc/4 m "n

a,8,y,c,T,J in the above equations are functions of partial deriva-

tives of the physical coordinates (x,y) with respect to transformed coordi-

nates (&,n) (Ref 4, Appendix A). It should also be noted that using the

Bernoulli equation to calculate pressure distribution is a correct approach

for an irrotational flow field. Solution of a flow field for a hovercraft

is different in nature and the differences are discussed in Chapter VI.

Difference Equation

Equation (28) is approximated by second-order difference expressions

on the transformed grid. For the chosen field size, 71 x 44, Dirichlet

boundary conditions are specified by
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ip(I,J) = (I,l) on the body (34)

(lJ) = *2(1,44) on the outer boundary (35)

An explicit scheme is used to solve the stream function field. The

difference equation corresponding to equation (28) is

7n+l -
Xi,j [i,j(i-lj+i+l,j,j+l+il,j+l+il,jl-i+l,j)

Yij( i3- 1 ij+l i,j3,-1i,lij+ i,-i-,j+*i+l,j)i (36)

T =2(ai, j + yi,j) (37)

( Li~j;1i,j;yi,j;Oi,j;1i,j) =( i Sj ; ilj/2;yi,j;ai,j/2;Ti,j/2)/T (38)

Where superscript n refers to the most recent stream function values.

Starting from an initial guess for stream function values over the compu-

tational field, iteration with equation (36) converges to the solution.

The pressure coefficient equation (31) is evaluated on the body and,

as the body maps to J=l line, n is approximated by second order one-sided

difference expression. Integrating the pressure coefficient into lift and

quarter chord moment - efficients (Equations (32) and (33)) is accomplished

by using Simpson's one-third numerical integration algorithm. For com-

puter programs see Appendix A.

Applications

Stream function solutions for an airfoil in free stream and ground

effect are given in Chapter V and stream function contour plot are shown

too. Modifications of the above equations to include multi-valued points
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(branch cut) and vorticity to accommodate for the hovercraft peripheral

jet flow field solution are introduced in Chapter VI.

To check the equations and computer programs that are used, the

pressure coefficient variation for a cylinder in uniform flow is computed

using the coordinate system generated as described in the previous chapter.

As shown in Fig 11, good correlation is achieved between the analytical

and the finite difference solutions. Stream function contour lines for

this case are shown in Fig 12.
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I

FIGURE 12. Stream Function Contour Plot for Cylinder in
Free Stream
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V. AIRFOIL STREAM FUNCTION SOLUTION

* This chapter describes the numerical solution for airfoil in free

stream and ground effect. Included are details of the generation of

boundary fitted coordinate system, the determination of a stream function

solution with the Kutta condition satisfied at the leading edge, and the

derivation of lift and quarter-chord moment coefficients.

Airfoil Type

The procedure used is applicable to any arbitrary airfoil for which

the flow remains attached. For simplicity and to permit a comparison with

results derived by finite singularity method (Chapter II), a thin airfoil

was chosen. The finite singularity method was solved for a flat plate,

*therefore for stream function solution a symmetric 1% thickness ratio air-

foil is used. The determination of the grid points distribution around

the airfoil without interpolation between data points can be achieved by

using a NACA four-digit airfoil that can be described by an equation (Ref

5). Consequently, the chosen airfoil can be designated as NACA 0001.

Kutta Condition

Ordinarily, the Kutta condition at the trailing edge of an airfoil

can be stated in terms of either velocities or pressure differences. The

most convenient manner of stating Kutta condition in our case is in terms

of the stream function. Specifically, the body stream function must detach

from the airfoil at the trailing edge with the local camber line slope.

The procedure for stream function solution with Dirichlet boundary con-

ditions requires that a value for the body stream function be specified

and an arbitrary value will not necessarily satisfy the Kutta condition.

32



Thus, the computation of a stream function solution which does satis-

fy the Kutta condition requires an iteration and interpolation upon the

value chosen for the body streamline. Three points are chosen from the

field solution; one is the trailing edge, and the other two are slightly

behind the trailing edge and located on opposite sides of the extension of

trailing edge camber line. The physical coordinates and the stream function

values are known in these points that are marked as 1, 2 and 3 (Fig 13).

Constant @1 line

@3

Trailing Edge Camber
Line Slope

Figure 13. Kutta Condition Check Scheme

Equation of the plane passing through the three points is

X Y 10

X, YJ 1 1
0 (39)

X2  Y2  @2 1

X3  Y3  @3 1

Substituting j = 1 in equation (39) the plane equation reduces to

a straight line equation passing through the trailing edge with the
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stream function value €j constant along the straight line. The slope of

the straight line is given by

dY.X Y- : ____-_Y_(__-__)-Y_ -Y_ )(_-__ )_(40

T.E. X-Xj V2- X()()3-*1)'(X3-X1A 2-l

The Kutta condition is said to be satisfied whenever the slope derived by

equation (40) is in the proximity of the trailing edge camber line slope

within specified allowable error.

Airfoil in Free Stream

The airfoil is the inner boundary for generation of body fitted

coordinate system. The point collection describing the airfoil contour

is calculated by the equation for NACA 0001 airfoil (Table 3). The ori-

gin for the regior, is at the mid-chord Which is nondimensionalized to unit

length. In order to use the same airfoil point distribution for free

stream and ground effect cases, the airfoil is rotated clockwise by the

angle of attack. The boundary fitted coordinate system has to be re-

generated for each angle of attack. The "infinity" outer boundary is a

circle of ten chord length radius, which is described by equally spaced

points on the circumference. The airfoil points are numbered from the

trailing edge clockwise and the points on the outer boundary are numbered

for point (10,0) also clockwise. The outer boundary is generated by a

program subroutine. The initial guess is a series of elliptical n lines

with an increasing interval in axial direction. A typical body fitted

coordinate system is shown in Fig 14 and an enlargement and more detailed

picture of the airfoil neighborhood is given in Fig 15.

The stream function is computed in the transformed plane from the

transformed Laplace equation. Stream function values for a uniform flow
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FIGURE 14. Body Fitted Coordinate System for Airfoil in Free
Stream. Each fifth t and n lines are shown.
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10

FIGURE 15. Body Fitted Coordinate System for Airfoil
in Free Stream, Partial Region
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FIGURE 16. Stream Function .Contour Plot for Airfoil in
100 Angle of Attack in Free Stream.
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TABLE 3. Numerical Data for an Airfoil in

100 Angle of Attack

4 Y' -,
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G 4

.71 ...
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at zero angle of attack and a guess for the body stream function value

are used as boundary conditions. The initial guess is also the stream

function field for a uniform flow at zero angle of attack. A second guess

for the body stream function value is used and the stream function fields

are solved for those two guesses. The extent to which the solution cor-

responding to each body stream function value satisfies the Kutta condition

is noted for each case. Then, assuming that the discrepancy in Kutta con-

dition is a linear function of body stream function value, a new value for

body stream function value is determined. Thus, an iterative procedure

with linearly interpolated values for body stream function is started.

Iterations are said to converge to the final result when the stream func-

tion slope at the trailing edge equals the airfoil camber line slope at

this point within allowable error. Contour stream function plots (Fig 16)

illustrates satisfaction of Kutta condition.

Different grid point distributions have been tried for airfoil rep-

resentation. The very first distribution with equally spaced chordwise

intervals did not follow the curvature of the leading edge and produced a

sharp leading edge. This case was not used. The leading edge was next

smoothed by distributing 11 out of a total of 71 points in the 0.05 chord

length from the leading edge. The remaining parts were equally spaced be-

yond this point. Thus the equation for X location of grid points for an

airfoil in zero angle of attack is:

X* = 0.5 - 95 (k-l) k = l,....3030

= 045 0605 (k-30) k = 31,...36 (41)
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The same X locations are used to calculate grid points on the upper and

lower surfaces. The lift coefficient derived for this point distribution

is 21% less than the analytical thin wing solution, because there are not

enough points in the proximity of the leading edge to follow the strong

variations. In order to attract more grid points toward the leading

edge (X = -0.5) the basic distribution from equation (41) is modified by

the following equation.

X = (X* - 0.5)n - 0.5 (42)

Aerodynamic coefficients derived for grid distributions that are obtained

by equation (42) for n = 2 and n = 3, are given in Table 4. The results

in Table III indicate that the lift coefficient is over-estimated by 10%

(n = 3) and 5% (n = 2). The over-estimation is due to relatively large

intervals in the mid chord vicinity and toward the trailing edge.

TABLE 4. Calculated Aerodynamic Coefficients for 100
Angle of Attack for Different Airfoil Grid Point Distribution

C Cm 'body Kutta Error

Basic 0.869 -0.0675 -0.22983 0.52 X 10 -5

n = 2 1.160 -0.00188 -0.22913 0.66 X 10-7

n = 3 1.217 -0.00450 -0.23484 0.11 X 10-7

Final 1.150 -0.00224 -0.22816 0.48 X 10-7

Thin Wing 1.096 0.0 -
Theory

For a flat plate the analytical solution shows that n 40% of the

lift is generated by the 0.1 chord length from the leading edge (Appendix 8).
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This suggests that 40% of the points should be in this interval, and this

can be achieved by using equation (42) for n = 2. Thus, the final point

distribution employs equation (42) for the 29 points that fall within the

0.1 chord length, and the remaining points are distributed by 10 linearly

increasing intervdls between 0.1 and 0.5 chord length and equal intervals

from mid-chord toward the trailing edge (Table 4). rhe final airfoil

representation over-estimates the thin wing theory by only 4.5%. It

seems reasonable to assume that a finer grid will provide a better corre-

lation.

The pressure coefficient is derived from the stream function solu-

tion using equation (31). As the trailing edge is a re-entrant point, the

pressure coefficient is calculated twice for this point; once as a point

on the lower surface, and second as a point on the upper surface, using

one sided difference expressions. Because of residual errors in the cal-

culations, slightly different values are obtained in violation of Kutta

condition. The mismatch is resolved by interpolating the value on the

lower surface using sixth order Lagrange interpolation and substituting

the same value to the upper surface point. Fig 17 shows a typical chord-

wise variation of pressure coefficient.

Lift and quarter chord moment coefficients are obtained by inte-

grating pressure coefficient (Equations (32) and (33)). For an ideal

symmetric airfoil, the quarter chord moment coefficient is zero and a non-

zero calculated moment coefficient is a measure to the error introduced

in pressure coefficient. The calculated coefficients are shown in Table

5 and a plot of lift coefficient variation with angle of attack is in

Fig 18. The figure shows a very reasonable 5,% correlation between thin

wing theory and finite difference results.
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TABLE 5. Aerodynamic Coefficients for Free Stream as Function
of Angle of Attack - Finite Difference Method

C Cmc/4 body Kutta Error

2 0.230 -0.31 X 10 4  -0.04512 0.161 X 10-3

4 0.460 -0.37 X 10-4  -0.09018 0.421 X 10-3

6 0.696 -0.17 X 1O-2 -0.13719 0.220 X 10-3

8 0.924 -0.21 X 1O-2 -0.18277 0.140 X 10-4

10 1.150 -0.22 X 1O-2  -0.22817 0.483 X 10-5

TABLE 6. Aerodynamic Coefficients in Ground Effect as Function
of Ground Distance and Angle of Attack - Finite Difference Method

a G.D. C9 Cmc/4 body Kutta Error

10 0.25 1.379 -0.355 X 10 1 -0.110 0.207 X 10- 6

10 0.50 1.123 -0.825 X 10- 2 -0.133 0.222 X 10-7

10 0.75 1.190 -0.415 X 10- 2 -0.152 0.195 X 10- 6

10 1.00 1.162 -0.107 X 10- 2 -0.165 0.660 X 10-7

10 1.50 1.142 -0.483 x 10 -0.185 0.366 X 106

4 0.25 0.644 -0.199 X 10- 1 -0.0475 0.237 X 10-6

4 0.50 0.539 -0.825 X 10- 2 -0.0565 0.242 X 10-7

4 0.75 0.500 -0.366 X 10- 2 -0.0622 0.386 X 10- 9

4 1.00 0.479 -0.212 X 10- 2 -0.0672 0.274 X 10 7

4 1.50 0.466 -0.147 X 10- 2 -0.0746 0.203 X 10-6
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Airfoil in Ground Effect

For the ground effect solution the same airfoil type and airfoil

body point distribution are used. The outer boundary is of rectangular

shape in which the base is the ground and the top and sides are at

"infinity" (ten chord units). Half of the outer boundary points (36) are

on the ground base with linearly increasing intervals from the mid-base

toward the sides (Table 7). The point at the outer boundary at the same

E as the trailing edge is on the base about 20% of the distance from the

mid-base toward the right side. This location is picked to get a physical

coordinate system that remains nonsingular around the trailing edge (Figs

19 and 20). The initial guess for the transformation is equally spaced

intervals in each direction with special attention to the region between

the airfoil and the ground where each guess has a gradually decreasing

slope changing from angle of attack to zero.

The stream function equation is solved by the same Kutta condition

iteration procedure, as before. The outer boundary and initial guess

values are of a uniform flow at zero angle of attack. The C. and Cmc/4

variations with ground distance for 4 and 10 degrees angle of attack are

given in Table 6 and in Figures 21 and 22 where they are compared against

finite singularity results. It is noted that a much better correlation

is achieved for 4 degrees angle of attack than for 10 degrees. The mis-

match can be explained by noting that finite singularity method is based

orn thin wing theory that is limited to small angles of attack and hence

to small lift coefficients. Another point of comparison between finite

singularity method and finite difference stream function solution arises

from comparing the variation of ground velocity (Fig 23) where good cor-

relation is obtained.
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Summa ry

In this chapter airfoil flow field solution is obtained for the

• stream function equation for potential flow. Here, the stream function

equation is solved by finite difference techniques on a body fitted

coordinate system. A linear interpolation scheme is developed to satisfy

Tthe Kutta flow condition at the trailing edge. A criterion for grid

point distribution over the airfoil is established. To resolve the

strong leading edge gradients, 40% of the grid point must be distributed

over 0.1 chord length about the leading edge. Variation of C and Cm
a .c.

with angle of attack and ground distance agree well to the variation de-

rived from finite singularity method (Chapter II).
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FIGURE 20. Body-Fitted Coordinate System for Airfoil in Ground
Effect, Partial Region
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TABLE 7. Numerical Data for Rectangular Outer

Boundary for Airfoil in Ground Effect
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VI. HOVERCRAF7 TTREAM FUNCTION SOLUTION

The hovercraft discussion is limited to the fundamental case of

symmetric hovering, although asymetric configurations are also feasible.

The putpose is to emphasize the difference between this case and airfoil

stream function solution and suggest appropriate solutions to get a well

defined jet.

Hovercraft Model

The peripheral jet type hovercraft for this 2-D model is a rectan-

gle of 0.9 X 0.1 units with two 0.1 diameters semi-circular ends (Fig

24). The two peripheral jets are 0.1 units width and are located syn-

metrically near the rectangle ends. The body point distribution for

hovercraft numerical definition assures enough points to resolve both

the two semi-circular ends and the peripheral jets in particular (Table

8). The outer boundary is a rectangle in which the base is the ground.

branch-cut

I'\

/\
/

Figure 24. Hovercraft Model
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TABLE 8. Numerical Data for a Hovercraft Model

VI rF x y F,0 4

2, 10'' 42000
4,., 4.. Al C) ' 3, J

04 3-463,

12 ''' 0~ 0' 3,

:i() * . I. . 0!- 0 ) t

*6 .3'0 -,050 52, -. 4/50 .0433,
0 U o)j ~ §0'-3,'

is~~~ J 0-0 , Q n)..

C) k)3 0

A. I.I/ .6o 1 2J - 65 )

2,),

o~ * 0 00 j .~

2l 0 . ''.O

*(,0 .0)00.0 0 0)

55



TABLE 9. Numerical Data for Outer Boundary for Hovercraft
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The point collection for outer boundary definition assures good reso-

lution for the jet outlets (Table 9). To obtain a reasonable-looking

boundary fitted coordinate system in the peripheral jet region with the

limited size arrays, the outer boundary sides and top are as shown (Fig

25). The initial guess is rectangles with equally spaced intervals in

each direction.

Multi-valued Stream Function

Peripheral jets introduce the same problem for a stream function

solution as a fluid source, for which integration of transverse velocities

along any closed path around the source results in two stream function

values at the same point. The difference between the two stream function

values is proportional to the source strength, which will be referred as

A . The stream function solution can be made single-valued by choosing

a branch cut along an arbitrary line connecting the inner and outer boun-

daries. Stream lines values change by an amount AP as they cross the

branch cut. Explicit difference equation (36) remains valid for irrota-

tional flow for every point in the field except those which form differ-

ences across the branch cut. For the points on the branch cut the differ-

ence equation is

*i ,j = Xi ,j ( 1i,+ il,)B j -il,~+il,~+il,--il,-

+Y i'j( i'j-l+ i,j+l)+ ij(-i,j-l+ i'j+l)+T (43)

The explicit difference expression (Equations (36) and (43)) are

solved for the computational field with Dirichlet type boundary conditions.

The jets are assumed to be uniform flow at the nozzles and at the outlets,
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Figure 26. Stream Function Contour Plot forH-overcraft, Potential Flow Solution
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with an assumed velocity at the nozzles. Stream function values are cal-

culated by integrating the velocities where the ground and hovercraft

base between the jets are assigned to be zero. A contour plot for the

stream function is shown in Fig 26, from which it may be concluded that

solving an irrotational flow does not provide a solution with a well-

defined jet even though the stream function is single valued.

Vorticity

In order to obtain a better defined jet, vorticity is introduced

in two shear layers on the jet boundaries. Vorticity in the flow field

changes the governing equation to Poisson type.

: -W (44)

For simplicity the vorticity will be calculated as function of the stream

function by assuming an arbitrary velocity profile across the jet as

shown in Fig 27. The chosen velocity profile is uniform velocity across

the center semi-width tapering linearly toward the boundaries.

-L/4 - -- L/2 - 1/4

Figure 27. Jet Velocity Profile
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The total change of stream function value across the jet is

3 UL/4 (45)

Stream function variation as function of Y.

2 UL(Y/L) 2  0 <Y/L <1/4

UL/8 + UL(Y/L - 1/4) 1/4 <Y/L <3/4

3 UL/4 - 2 UL(Y/L-I) 2  3/4 <Y/L < 1 (46)

Vorticity is calculated from equation (44).

= -v2p= -4U/L 0 <Y/L <1/4

0 1/4 <Y/L <3/4

+4U/L 3/4 <Y/L <1 (47)

Equation (47) can be written in a more convenient form as:

= -v2 = -4U/L 0 <p/'* <1/6

0 1/6 <t/@* <5/6

+4U/L 5/6 <p/'* <1 (48)

Equation (48) expresses vorticity as a function of stream function

only and thus is a very convenient form. The explicit difference ex-

pressioai corresponding to equation (44) is:

0i'j = (R.H.S. of equation 43) + [Jij2/2(a ij+y ')].w( ij) (49)

Equation (49), which includes vorticity and a branch cut, together

with Dirichlet boundary condition as described above, produced a well de-

fined jet (Fig 28).
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Figure 28. Stream Function Contour Plot for Hovercraft,
Vorticity in Jet Edges
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Pressure Derivation

Cushion pressure is a very important parameter for hovercrafts.

Exponential theory, the commonly used analytical method for cushion

pressure calculations (Ref 3), assumes that the jet between the nozzle

and the ground forms a section of a torrus. All the other analytical

methods have to assume the jet geometry as well. Actual jet geometry

variation from the analytical model result in inaccuracy in cushion

pressure calculated.

A finite difference method, rather than assuming jet geometry,

solves for it by using the stream function solution. The pressure field

can be obtained by the Poisson equation (Ref 6).

axxay ) (50)

Equation (50) is usually solved with Neuman type boundary condition that

can be determined by Euler equations on the boundary. This suggested

approach for pressure field calculation has not been tried as part of this

study, and is left for further investigation.

Summary

In this chapter the 2-D flow field for an air cushion vehicle with

peripheral jet is obtained from the stream function-vorticity, Poisson

equations. As this case introduces a flow source within the computational

field and, thus, raises a question of a multivalued stream function, a

branch cut is introduced. Solution of an irrotational flow field shows

that the jet spreads widely. In order to obtain a better defined jet,

vorticity is derived from an arbitrary assumed velocity distribution at
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the jet outlets and assumed to be constant along stream lines. The in-

vestigation must be continued to determine the influence of the above

assumptions on the pressure field.

- 6
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VII. CONCLUSIONS

Stream function-vorticity equations expressed in numerical finite

difference formulation can be used on a body fitted coordinate system

to obtain flow field for both an airfoil varying degrees of ground effect

and air cushioned vehicle with a peripheral jet. The airfoil flow field

is solved for the potential flow case. For lift and quarter-chord moment

coefficients at various angles of attack and ground distances, good agree-

ment is observed between independent solutions with a finite difference

method and a finite singularity method. A criterion for grid points

distribution about the leading edge is set up to resolve the strong grad-

ients in this region properly. The stream function-vorticity equation is

solved with branch cut needed for fluid sources in the hovercraft. To

obtain a well defined jet, vorticity in the edges of jets is essential

and can be simply modeled with some success.

Several aspects remain to be investigated to complete the feasibi-

lity determination. The first major aspect is to develop a stable for-

mulation to obtain the pressure field from the stream function field by

solving the Poisson equation with appropriate boundary conditions. This

appears straightforward. Also, pressure field sensitivity to both assumed

jet vorticity distribution and vorticity transport, must be evaluated.

The results of this work indicate that a 2-D stream function-

vorticity solution to an air cushioned airfoil appears feasible. If re-

sults remain positive after last questions are answered, the result will

be a powerful analytical tool for flow field analysis.
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APPENDIX A

COMPUTER PROGRAMS DESCRIPTION

Appendix A contains short descriptions on the computer programs

that are used. Only the five main programs are discussed; other short

programs that are used are not of special interest. Four out of those

five programs were basically written by the AF Flight Dynamics Laboratory,

Wright-Patterson AFB, but were changed to accommodate for the special

needs of this study. The main objective of each program is:

1. Program CORDMN - Generation of boundary fitted coordinate

system.

2. Program ABGMN - Derivation of transformation parameters

3. Program PSIMN - Stream function field solution.

4. Program UVP - Derivation of velocity components and

pressure fields.

5. Program AERDCO - Derivation of aerodynamic coefficients.

The structure of the programs and some input and output information is des-

cribed for each program separately.

Program CORDMN

This program generates 2-D body fitted coordinate system for any

arbitrary number of bodies in the region. Input data consists of inner

boundary and optionally the outer boundary (if not generated by the pro-

gram), max number of grid points in each direction in the transformed

66



plane, number of bodies in the field, max number of iterations, acceler-

ation parameters, allowable X and Y errors, various header lines, print

and plot control parameters. Optionally the field generated by a previous

run may be read in instead of the boundaries. Output data consists of X

and Y arrays that may be printed out and/or written on disk (tape 10).

Subroutine BNDRY: Produces an outer boundary if not given by input

data.

Subroutine GUESSA: Produces an initial guess for the entire compu-

tational field.

Subroutine TRANS: SOR iteration routine for field solution (X,Y).

Subroutine RHS or RHSBL: Assigns coefficient for exponential series

that are the right hand side of transformation

equations. Subroutine RHS is an exponential de-

cay right hand side where subroutine RHSBL co-

efficients are derived from Blasius flat plate

boundary layer solution.

Function ERROR: Calculates largest field error between two con-

secutive iteration steps.

Subroutine SLEQ: Simultaneous solution of linear algebraic equation

used to derive RHSBL coefficients.

Subroutine MAXMIN: Calculates the maximum and minimum values of a

two dimensional array. Used for plots scaling.

Subroutine REED: Reads data from disks.

Subroutine WRITDK: Writes on disk and prints output data.

Subroutine CORPLT: Plots first guess and final coordinate system.
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Program ABGMN

This program calculates numerically (second order difference ex-

pressions) the transformation parameters for the coordinate system arrays

(X,Y) that were produced by program CORDMN. It should be noted that the

calculations give 4a, 4R, 4y, 4J, 2a, 2T, and not the transformation para-

meters themselves. Input data consists of X and Y arrays that are read

from disk (tape 10), control parameter for sharp trailing edge, control

parameter for sharp trailing edge, control parameter for body transfor-

mation, parameters change, and vdrious print parameters. Output data is

written on disks (tape 11 - 4a, 4s, 4y; tape 12 - 4J; tape 13 - 2a, 2).

Subroutine ABG.1: Calculates the transformation parameters by second

order difference expressions.

Subroutine INOUT: Controls data input and output.

Subroutine CHNG: Calculates the expression a/J and y/J for J 1

(on the body) and stores the values as and y on

the body (note that a and y on the body are not

used for stream function field solution).

Subroutine TEDGE: Recalculates transformation parameters using central

differencing if the body does not have sharp trail-

ing edge.

Subroutine MAXMIN: Calculates the maximum and minimum values of a two

dimensional array. Used for plots scaling.

Subroutine REED: Reads data from disks.

Subroutine WRITOK: Writes on disk and prints output data.
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Program PSIMN

This program produces a stream function field solution by solving

explicit numerical expressions. Input data consists of coordinate sys-

tem given by X and Y arrays (tape 10), transformation parameters (Tapes

11 and 13), max number of iterations, convergence criterion, angle of

attack, free stream velocity, Kutta convergence criterion, max number

of Kutta iterations, stream function value on the body, and print con-

trol parameters. For hovercraft solution jets velocity is given as input.

Output data consists of stream function field array (tape 14) and body

pressure coefficient one dimensional array (tape 16).

Subroutine BNDRYP: Produces outer boundary condition.

Subroutine GUESSP: Produces stream functional initial guess.

Subroutine COEFS: Produces new coefficients needed by stream function

numerical expression.

Subroutine LAPSOR: Produces field solution.

Subroutine PRES: Calculates pressure coefficient by Bernoulli equation.

Function ERROR: Calculates largest field error between two consecutive

iteration steps.

Subroutine REED: Reads data from disks.

Subroutine WRITDK: Writes on disk and prints output data.

Subroutine KUTTA: Calculates body stream function slope at the trailing

edge to compare against camber slope (airfoil only).

Subroutine OMEGA: Calculates vorticity values a function of stream func-

tion values.
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Program UVP

This program produces velocity components and invicid pressure

fields. Input data consists of coordinate systems given by X and Y arrays

(tape 10), stream function field array (tape 14), angle of attack, velo-

city at infinite to reference velocity ratio, control parameter to choose

between 2-D and axisymmetric case and print control parameter. Output

data consists of u and v velocity components and pressure fields (tape 20).

Subroutine VEL: Produces velocity component field by numerical dif-

ferentiation of stream function field.

Subroutine CPINV: Produces pressure field for invicid flow by Bernoullis

equation.

Subroutine REED: Reads data from disks.

Subroutine WRITDK: Writes on disk and prints output data.

Program AEROCO

This program calculates lift and moment coefficients for an airfoil

in invicid flow field by Bernoulli equation. Input data consist of coordi-

nate system given by X and Y arrays (tape 10), pressure coefficient on the

body (tape 16), and angle of attack. Output data consist of pressure co-

efficient printout and lift and moment coefficients.

Subroutine CLCM: Calculates lift and moment coefficients by inte-

grating numerically pressure coefficient by Simpson's

one third rule.

Subroutine LAGINT: Corrects pressure coefficient at the trailing edge

by using Lagrange interpolation formula.

Subroutine WRIPR: Writes on disk and prints single dimensional array

output data.
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APPENDIX B

Chord-Wise Cp Variation for Flat Plate

Appendix B contains an analytical analysis for chord-wise Cp vari-

ation for a flat plate. The analysis is done using thin wing theory

vortices distribution for a flat Plate (Ref 1). The form of the derived

results is percentage of lift coefficient vs. non-dimensionalized chord

length from the leading-edge. The results are used as a measure for

point distribution on the airfoil that wil1 pick up the high gradients

around the leading edge without amplifying Cp values on the rear section

of the airfoil.

Lift coefficient is calculated by integration of vorticity distri-

bution, which leads to the following:

e arccos (2 x/c-l) (B-I)

%CZ 100 [l-(6-sino)/n] (B-2)

the results from B-1 and B-2 are given in Table B-1 and Figure B-1. Re-

sults show that 40% of the lift for a flat plate is generated by 10% of

chord from the leading edge, and only 18% of the lift is generated by the

semi-chord between mid-chord and trailing edge. Conclusion from the lift

contribution by various parts of the airfoil is that very rapid pressure

chanaes and, hence. velocity channes occur in the vicinitv of the leadinq

edge. In the finite difference numerical field solution where the matrices

sizes are tried to be kept reasonable, more points should be put near the

leading edge to pick up those changes. The chosen point distribution,

that show to give good results, was 40% of the points within 10 from the

leading edge and only 27"% of the point on the rear semi-chord.

71



Table B-I. Percent of C vs. Nondimensiona7 Chord

Measured from Leading Edge

x/c % C x/c "0C

0. 0. 0.10 39.6

0.01 12.7 0.20 55.0

0.02 17.9 0.30 66.1

0.03 21.9 0.40 74.8

0.04 25.3 0.50 81.8

0.05 28.2 0.60 87.6

0.06 30.9 0.70 92.3

0.07 33.3 0.80 95.9

0.08 35.5 0.90 98.6

0.09 37.6 1.00 100.0

Q

0

0
0

4t,

C

-o

o

fK

0.00 U. 40 0.50 1.20
X/C

Figure B-I. Graphic Presentation of Table B-I
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